LBURGINAZE[™]

Engineered Human Arginase 1 for the Treatmentof Liver cancer

Techno-Commercial Proposal

Prof. Abhay H. Pande,

Department of Biotechnology,
National Institute of Pharmaceutical Education and Research
(NIPER)

Sec-67, S.A.S. Nagar (Mohali)-160062 India (apande@niper.ac.in)

LBURGINAZE™ and its potential to revolutionize the treatment of Liver cancer

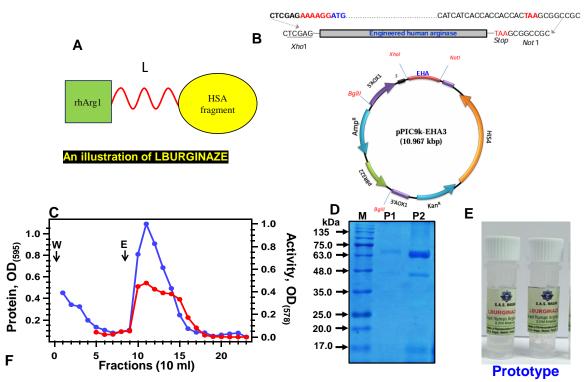
Liver cancer is one of the most common malignancies and is a 2nd major cause of cancer mortality globally (accounting for ~9 lakhs cancer deaths annually). Of all liver cancer cases, >90% are hepatocellular carcinomas (HCCs). Treatment strategies include chemotherapy, radiotherapy, immunotherapy and surgery. Immunotherapy and transplantation are more effective than others but these treatments are neither available nor affordable for everyone in our country. Thus, chemotherapy is mostly used in India for the treatment of advanced HCC cases. However, these drugs even at their maximum dose extend the median overall survival of liver cancer patients by ONLY 3-6 months and also possess serious toxicity. Thus, there is a dire need for the development of new strategy for the treatment and management of Liver cancer.

LBURGINAZETM is an engineered human arginase 1 (rhArg 1) enzyme which not only exhibits anti-cancer activities against a variety of cancers (broad spectrum) but also possesses improved pharmacokinetic properties. Currently, it is in pre-clinical developmental stage.

Current market of liver cancer medication:

The liver cancer medication market is projected to become an active ground for competition in the coming few years. According to Data Bridge Market Research analysis, the expected CAGR of the liver cancer (HCC) drugs market is ~17.61% and it will grow up to USD 14.18 billion by 2030.

Problem statement:


Hepatocellular Carcinoma (HCC) is a leading cause of cancer deaths worldwide, with current treatments like chemotherapy (Sorafenib) offering limited efficacy and high toxicity. Many patients face poor survival rates and significant side effects, underscoring the urgent need for more effective, less toxic therapies. Liver cancer cells' dependence on external arginine due to arginine auxotrophy presents a therapeutic opportunity. Therefore, novel strategies, such as LBURGINAZE™, are needed to improve outcomes for HCC patients.

Solution: LBURGINAZE™

LBURGINAZE is an engineered human arginase 1 that hydrolyzes arginine and exhibit anti-cancer effects. It comprise of native human arginase 1 enzyme linked to a half-life extension partner *via* a flexible peptide linker. LBURGINAZE attenuate cancer in animal model of liver cancer.

Development of LBURGINAZE™

- 1. **Designing and engineering of LBURGINAZE variants**: Using protein engineering approaches, we have engineered LBURGINAZE variants.
- 2. **Clone development**: Clones (*Pichia pastoris*) capable of producing LBURGINAZE™ variants are developed.
- 3. **Production process development**: A simple-n-cost effective process (lab-scale) to produce LBURGINAZETM variants is developed. This process is amenable for the development of process for the industrial scale production of LBURGINAZETM.

Fig.1 Production of LBURGINAZE: Panel A is design of LBURGINAZE. **Panel B** is a cartoon of expression vector. **Panel C & D** shows chromatogram and SDS-PAGE, respectively, of a typical purification experiment. **Panel E** shows prototype.

- 4. *In vitro studies*: Functional characterization of LBURGINAZE[™] variants has been completed using non-cellular and cellular assays. LBURGINAZE has shown a broad spectrum of activity against various types of cancer.
- 5. **Efficacy study in animal model of liver cancer**: The efficacy of LBURGINAZE[™] variants has already been demonstrated in xenograft model of liver cancer (in the lab of Prof. Kulbhushan Tikoo, Dept. of Pharmacology Toxicology, NIPER SAS Nagar).

Fig 2. Anti-cancer activity of LBURGINAZE LBURGINAZE combined with 5-fluorouracil (5-FU) was found to be more effective than either 5-FU or LBURGINAZE alone in reducing the growth and prolonging the survival of tumour-bearing animals.

Our Publications:

Prasad, Y. R., Anakha, J., Jawalekar, S. S., & Pande, A. H. (2024). Broad-spectrum anti-cancer activity of fused human arginase variants. **Investigational New Drugs**, 10.1007/s10637-024-01466-8. Advance online publication. https://doi.org/10.1007/s10637-024-01466-8

Prasad, Y. R., Anakha, J., & Pande, A. H. (2024). Treating liver cancer through arginine depletion. **Drug Discovery Today**, 29(4), 103940. https://doi.org/10.1016/j.drudis.2024.103940

- Jawalekar, S. S., Kawathe, P. S., Sharma, N., Anakha, J., Tikoo, K., & Pande, A. H. (2023). Development and characterization of fused human arginase I for cancer therapy. Investigational New Drugs, 41(5), 652– 663. https://doi.org/10.1007/s10637-023-01387-y
- Anakha, J., Prasad, Y. R., Sharma, N., & Pande, A. H. (2023). Human arginase I: a potential broad-spectrum anticancer agent. **3 Biotech**, 13(5), 159. https://doi.org/10.1007/s13205-023-03590-3
- Anakha, J., Kawathe, P. S., Datta, S., Jawalekar, S. S., Banerjee, U. C., & Pande, A. H. (2022). Human arginase 1, a Jack of all trades?. **3 Biotech**, 12(10), 264. https://doi.org/10.1007/s13205-022-03326-9
- Indian Patent application # 202111011642 Snehal Jawalkar, Kulbhushan Tikoo Abhay H. Pande. Engineered arginase constructs, method of generation and uses thereof.
- **Indian Patent application # 202211013970** Abhay Hariram Pande, Snehal Sainath Jawalekar, Priyanka Sugriv Kawathe, Nisha Sharma, Kulbhushan Tikoo. Engineered arginase, method of generation and uses thereof.
- **PCT/IN2022/050258** Snehal Jawalkar, Kulbhushan Tikoo Abhay H. Pande. Engineered arginase constructs method of generation and uses thereof.

Market Opportunity:

There is a growing need for the development of more effective treatment(s) for liver cancer cases. The liver cancer medication market size is projected to grow up to USD 14.18 billion by 2030 with CAGR of ∼17.61%. There is a very-high chance that LBURGINAZE[™] variants can turn out to be potential blockbusters in the treatment of multiple cancer conditions in coming years!!!

So, there is a HUGE market potential for is LBURGINAZETM as it can be used for various arginine auxotrophic cancers.

Development Plan: Long term (2025-2035)

Long-term (2025-2035) and immediate short-term (2025-2027) plans for the development of LBURGINAZETM is given as **Annexure 1**

Financial Projections:

- Cost of non-GLP studies is tabulated in Annexure 2
- Further cost will require in-depth discussion with the partner company

Why LBURGINAZE is ideal for liver cancer?

The current treatment strategies available for liver cancer patients are either non-affordable or are less effective and more toxic. LBURGINAZE can be an ideal candidate for the treatment of liver cancer patients.

- ✓ LBURGINAZE is specifically designed to target the metabolic vulnerabilities of cancer, making it a *highly efficacious* treatment option
- ✓ LBURGINAZE is engineered to have improved drug-like properties (pharmacokinetics) making it a safer option
- ✓ **Cost-effectiveness** and potential for **affordability**, compared to existing treatments, makes LBURGINAZE an ideal candidate for liver cancer patients, particularly in regions like India.

Annexure 1 LBURGINAZE Development Plan -1 (Long term, 2025-2035)

Developmental Stages	Time-line	Milestones
Stage 1: Discovery & Early Development (Already Done)		
Engineering, clone development, lab-scale production process development; in		Prototype, process of
vitro testing and efficacy assessment in animal model of liver cancer is completed.	2014-2024	production & PoC
Prototype of product and proof-of-concept is ready.		READY
Stage 2: Non-GLP studies-1		
 i) Clone optimization and Scale-up of production process (5-10 Liters) 		
ii) Development of stable formulation of LBURGINAZE and stability studies		
iii) Toxicology studies of LBURGINAZE formulation		
iv) Safety pharmacology studies of LBURGINAZE formulation		
v) PK studies of LBURGINAZE formulation		
Stage 3: Non-GLP studies-2		
i) Re-validation of stage-2 studies in higher animals		
ii) Efficacy studies (dose, route, combination etc) of LBURGINAZE formulation in		
relevant animal model		
ii) Re-validation of efficacy of LBURGINAZE formulation in relevant animal model		
Stage 4: GLP studies		
i) GLP-studies for IND application filing		
ii) IND application filing		
iii) Rebuttal		
Stage 5: Manufacturing process for clinical studies		
i) Preparation of LBURGINAZE batch in GMP facility for clinical studies		

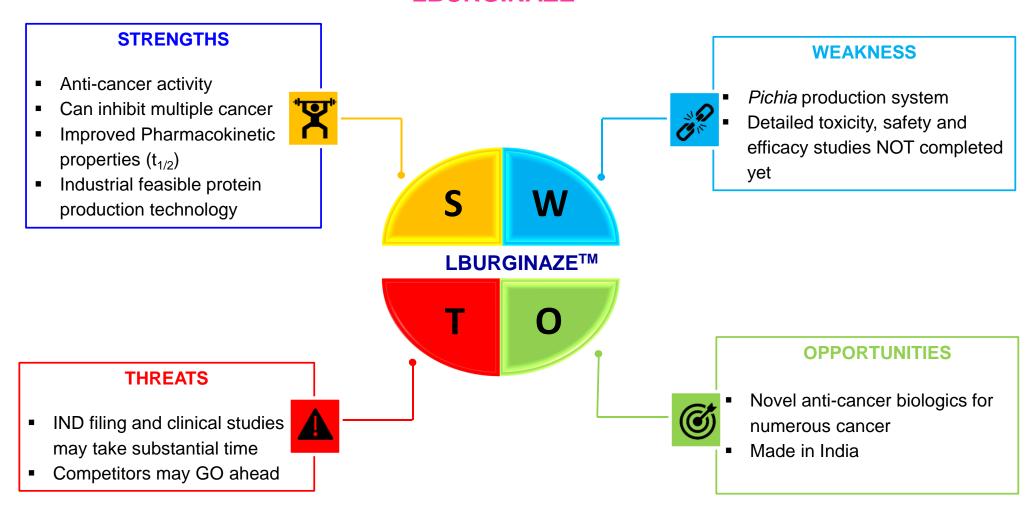
Stage 6: Clinical studies	
i) Phase I Clinical Trials	
ii) Phase II Clinical Trials	
iii) Phase III Clinical Trials	
Stage 7: Regulatory Review and Approval	
i) NDA / BLA filing	
ii) Rebuttal	
iii) Product labelling and marketing approvals	
iv) Post approval preparation and preparation of product launch	
Stage 8: Commercialization and Post-Market Activities	
i) Product launch	
ii) Expansion and Scaling	
iii) Post-Market Surveillance & Lifecycle Management	

Annexure 2

LBURGINAZE Development Plan-2 (Jan 2025-Dec 2027)

(Stage 2: Non-GLP studies-1)

Target: to generate data for Stage 3 and 4 studies!


	Experiments	Deliverables	Time-line	Cost
1	Production: i) Clone optimization; ii) Process optimization (5 Its fermenter)	- high-yield clone; - optimized process; - data for pilot scale-up (50-100 lts); data for stage-5 experiments	03 - 18 Mo	
2	Formulation & Stability studies: (as per NDCT-2019 rules) i) Formulation ii) Stability studies iii) Data of final formulation	- 2 final formulations; - stability data; - analytical data of formulation; - data for further pre-clinical/clinical studies as well as for scale-up of formulation	03 - 18 Mo	
3	 i) <u>Systemic Toxicity studies</u> (Single dose / dose ranging toxicity studies; <u>Repeated-dose systemic toxicity studies</u> (14/28/90/180 days); ii) <u>Immunogenicity / Hypersensitivity</u> studies iii) <u>Local toxicity studies</u> with proposed route of application? iv) <u>Genotoxicity studies</u> v) <u>Reproductive toxicology studies</u> (Male fertility, other studies) 	 toxicological profile of formulation therapeutic index of formulation data for Stage-3/4 studies 	09 - 33 Mo	
4	Safety Pharmacological studies: (as per NDCT-2019 rules) i) Cardiovascular system ii) Central nervous system iii) Respiratory system	- safety profile of formulation - data for Stage-3 experiments	12 - 18 Mo	
5	Pharmacokinetic studies: i) All ADME parameters	- Pharmacokinetic data / metabolic profile of formulation - data for Stage-3/4/6	12 - 18 Mo	
6	Administrative cost			

^{*}Tentative, based on the estimates received.

**Funding:

- 1. Partner company shall fund 100% of these studies, or
- 2. Partner company & NIPER SAS Nagar together shall arrange funding from various schemes of GoI (ex, BIRAC, ICMR, DST, Others).

LBURGINAZETM

LBURGINAZETM: Engineered Human Arginase 1 for the Treatment of Liver cancer

1. Field:

Liver cancer, the sixth most common cancer globally and the second-leading cause of cancer-related deaths, presents a critical public health threat. Diagnosis often occurs in advanced stages of the disease, aligning incidence with fatality rates.

PATENT STATUS:

Applied

TRL STATUS: TRL3/4

2. Problem:

There are various treatment strategies available for liver cancer, including surgery, transplantation, and radiotherapy, which are typically used for early-stage cases. For intermediate and advanced stages, chemotherapy is commonly administered; however, it is associated with serious toxicity issues. Even at maximum doses, chemotherapy extends median survival by only 3-6 months. Thus, there is an urgent need to develop more effective agent(s) for the treatment and management of liver cancer.

LBURGINAZE

3. Need of the hour:

The urgent need for safer, more effective treatments for Hepatocellular Carcinoma (HCC) is critical due to the high mortality and severe side effects of current therapies.

4. Our solution: LBURGINAZE™, an engineered human arginase 1, is an effective anti-cancer biologic.

SPECIFICATIONS OF TECHNOLOGY:

- 1. **Fusion Protein Engineering**: LBURGINAZE is an engineered human arginase 1 involved in arginine deprivation and manages liver cancer effectively.
- 2. **Simple-n-cost effective production platform**: High yield clone (*P pastoris*) and simple production process
- 3. **Superior efficacy**: LBURGINAZE has potential against broad spectrum of arginine auxotrophic cancers.
- 4. Protected intellectual property: Indian and International patent filed.
- 5. Made In India !!!

Please Contact:

Dr. Abhay H. Pande,

Professor (Department of Biotechnology) National Institute of Pharmaceutical Edu. Res. (NIPER) Sector-67, S.A.S. Nagar, Mohali-160062, Punjab (India)

Telephone: 0172-2214682-85, Extn: 2068

E-mail: apande@niper.ac.in; IPR cell: iprcell@niper.ac.in;

Technical cell: technicalcell@niper.ac.in

Business Model Canvas for LBURGINAZE™

Problem:	Solution:	Unique Value Prop:	Unfair Advantage:	Customer Segments:	
- Liver cancer is a critical public health threat (6 th most common	- LBURGINAZE [™] , a engineered human	Reduced Adverse Reaction potential for lower doses &	Reduced Adverse Reaction	Disease segments:	
cancer globally & 2 nd leading cause of cancer-related	arginase 1 enzyme that hydrolyse arginine in the	fewer side effects compared to existing treatments)	Potential for lower doses and reduced side effects	Multiple cancers	
deaths)	extracellular body pool and			Partners:	
- Rate of liver cancer cases is	manage arginine-	Cost-Effective	Versatility:	National and	
growing rapidly in low- and middle-income countries	auxotrophic cancers more effectively	potentially lower production costs, more accessible and	Potential applicability for the treatment and	international	
- There is no effective way to	Circuivery	more affordable for Indian	management of multiple	Start-ups &	
prevent or treat liver cancer		patients; Made in India	cancer conditions (~20)	Pharmaceutical	
			, ,	companies for co-	
Shortcomings:		Versatility	Affordable-n-accessible:	development	
- Current treatments are		potential applicability to a	Potential low cost and made in India		
inadequate or non-affordable - A dire need to develop more		range of cancers and arginase deficiency	made in maia		
efficacious treatment		arginase denoiency			
Existing Alternatives:	Key Metrics:	High-level Concept:	Channels:	Early Adopters:	
Various treatment available for	- Efficacy in multiple pre-	- Unique design features of	National & international	National &	
cancer (including surgery,	clinical models	LBURGINAZE [™] make it a	- Start-ups	international	
radiotherapy & chemotherapy)		potential candidate for the	- Pharmaceutical	- Start-ups	
are less effective and toxic	- Cost of GLP mode proof	treatment and management	companies		
		of multiple arginine-			
Cost Structure:		auxotrophic cancers	Revenue Streams:		
Cost Structure.			Neveriue otreams.		
- Cost of non-GLP studies is tabulated in Annexure 2			- Funding from government / non-government		
- Further cost will require in-depth discussion			research grants		