
Review Article

CRIPS Vol. 16 No. 1 January-March 2022 3

Artificial Intelligence in Drug
Discovery (AIDD)

Vishnu K. Sharma1 and Prasad V. Bharatam2*
1Department of Pharmacoinformatics, 2Department of Medicinal Chemistry,

National Institute of Pharmaceutical Education and Research,
S.A.S. Nagar, Punjab, India, 160062

The importance of Computer Aided Drug Discovery (CADD) has been consistently increasing over
the past 20 years. Artificial Intelligence (AI) is one of the CADD methods, machine learning (ML) is
one of its subtopics. In the past five years, many Artificial Intelligence in Drug Discovery (AIDD)
approaches were employed towards drug discovery. This article includes discussion on the scope
and limitations of AIDD.
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Introduction

The Artificial intelligence (AI) "is the science and
engineering of making intelligent machines, especially
intelligent computer programs. It is related to the similar
task of using computers to understand human intelligence,
but AI does not have to confine itself to methods that are
biologically observable".1,2 In the year 1956, Allen Newell
and his colleagues created the Logic Theorist, the first
running AI software program.3 Though the original
objectives of AI are not yet completely realized, many AI
techniques became available and their usage is increasing
with time. The AI techniques are very popular now-a-days
due to the involvement of AI in its various forms across a
large range of domains ranging from robotics, speech
translation, image analysis, etc. Several innovative
techniques were developed by computer science
researchers in an attempt to make computers intelligent,
some of them found applicable in chemistry, biology and
pharmaceutical sciences. To design new organic synthetic
schemes, to understand complex biological systems, to
design new APIs or development of new analytical/
diagnostic devices or methods, AI is being used. The AI
techniques are also applicable to drug discovery, drug
development, drug repurposing, drug metabolism
prediction, drug toxicity analysis, improving pharmaceutical
productivity, clinical trials and almost all aspects of
pharmaceutical sciences.4 All these techniques are
collectively considered under AIDD (Artificial Intelligence
in Drug Discovery). These AI technologies are not yet
routinely practical in Computer Aided Drug Design
(CADD), yet they are being used to resolve complex
drug discovery problems. In comparison to Ligand-based
drug design (LBDD) and Structure-based drug design
(SBDD), AIDD is in its nascent state. A few books are
available which include discussion on AIDD.5,6

Initially, AI was utilized to develop logical programming
platforms (Prolog,7 LISP8) on par with general programing
languages. Later on, as a part of machine learning (ML),5,

9,10 many novel methods Knowledge Base Systems (KBS)

like Artificial Neural Networks (ANN), Support Vector
Machines (SVM), Genetic Algorithms (GA), Deep Learning
(DL) Fuzzy Systems (FS), pattern recognition tools,
classifiers, etc. were introduced, all of them found
applications in AIDD.11,12 In the current scenario, the AI
methods are emerging complementary to the molecular
modelling based methods for the CADD scientists. As of
today, it appears that the AIDD based operations are
different from those operations offered at atomic level by
molecular modelling techniques, however, the overlap
between these operations are increasing with an
exponential growth.

As the contributions of ML in Drug Discovery (MLDD)5,9,

10,13 are increasing, the terms AIDD and MLDD are being
treated as synonyms. Machine learning and data mining
can be applied to provide many solutions such as --
classification, regression, clustering, dimensionality
reduction, reinforcement learning, deep learning, anomaly
detection and many more. Apart from that, several
subtopics of machine learning include ANN, DNN (Deep
neural networks), RNN (Recurrent neural networks), CNN
(Convolutional neural networks), GA, SVM, Bayesian
Networks, DT (Decision trees), LR (Logistic regression),
k-NN (k-nearest neighbors), NB (Navie bayesian)
techniques are also important in CADD (Figure 1).
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Figure 1: Artificial Intelligence in Drug Discovery (AIDD)
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Knowledge-Based Systems (KBS) in Drug
Discovery

A knowledge-based system14 (KBS) is a
computational approach that captures and uses
knowledge from a variety of sources. Knowledge
Base (KB) is a data base of knowledge,
Information related to any particular topic is
stored in the form of Fact Bases (FB) and the
relations between various factual data points in
Fact Bases are defined in the formof Rule Bases
(RB). When the data from FB and RB are
efficiently interpreted with the help of inference
engines, the entire system is known as an
expert system (ES). Currently, a knowledge-
based system is a major area of artificial
intelligence which can help in making decisions
based on the data and information that resides
in their database i.e. Knowledge Base (KB).
Several Drug-KBS are being developed.15

PharmGKB from Stanford University is a KBS
based on drug-gene interactions,16 DailyMed is
a KBS containing drug-disease information,17

SuperTarget is a KBS which includes information
related to drug-target interactions,18 merged-PDDI
includes drug-drug interaction KBS.19 These drug-
KBS are being used for drug repositioning by identifying
new drug indications with the help of knowledge on drug-
target, protein-protein, gene-disease interactions.
Beneficial drug combination predictions are being made
from the drug-target information after combining with ATC
(Anatomical Therapeutic Chemical) classification systems.
Though there are a few successes, many issues are yet
to be sorted out and the applications are yet to be
expanded, for example, in terms of drug-KBS integration,
implementation, improving predictive results, eliminating
negative samples, etc.20

In the field of CADD, the calculation of several descriptors
for QSAR purpose is based on knowledge-based system.
Knowledge-based scoring functions (for molecular docking
purposes) are application of KBS which rely on the
statistical observations of intermolecular contacts collected
in large 3D structural databases. Chemical and
macromolecular databases (CCSD and PDB) stored
potential mean forces (distance dependent) for various
subunits of molecules, because many such interactions
occur frequently among the small and macromolecules.
SmoG, ASP, DSX, IT-Score, DrugScore, etc. are some of
the known scoring functions which are based on the
KBS methods.21 For example, DrugScore scoring function
which employs the distance-dependent pair potentials
from nonbonded interactions, has been derived from the
crystal data. The scoring functions DrugScoreCSD and
DrugScorePDB are derived from the crystal data from CSD
and PDB respectively.22 Klebe and his co-workers
established that DrugScoreCSD provides relatively more
satisfactory results compared to the original PDB-based
DrugScore.22 Huang and co-workers developed a distance-
dependent knowledge-based scoring function - ITScore-
PP to predict protein-protein interactions. They utilized
crystal structures of 851 dimeric protein complexes which
containing true biological interfaces to derive ITScore-PP

scoring function.23 Ebejer et al. developed Ligity: a non-
superpositional, knowledge-based method to perform virtual
screening of small molecules.24 Several ADME-Tox
property based quantitative values are also being estimated
using knowledge based methods.25

Genetic Algorithms (GA) in Drug Discovery
The genetic algorithms (GA)26  is a computational method
for solving both constrained and unconstrained optimization
problems by adopting natural selection procedure. GAs
"evolve" solutions to problems using the principles of
genetics. Several generations of solutions are considered
which involve many candidate solutions in each generation.
The transformation of data from one generation to the
next generation happens mainly in three ways - (i) as
per a fitness function (ii) by crossover process and (iii)
mutated in a systematic manner. In this way, the number
of candidate solutions gets reduced marginally and the
solutions in the next iteration get better. When this
iterative procedure is continued for a few generations,
fittest solutions are obtained.26,27

GAs are being employed in QSAR and molecular Docking
extensively. Genetic function approximation can be used
as an alternative to regression analysis.28 They are being
used for descriptor selection, by performing generations
of QSAR analysis. A combination of QSAR and GA
methods were employed for designing inhibitors of methyl
transferase by Sun et al.29 Additional MLR analysis was
employed to obtain statistical significance. The identified
descriptors are ionization potential, topological charge
indices, polarizaility, and number of aromatic amines in a
molecule.29

Many molecular docking algorithms are based on GA
approach. Initially many conformers are considered in the
first generation, as the generations progress, the number
of conformers gets reduced-based on the best fit docked

Figure 2: Process-flow diagram of the AutoGrow4 algorithm. Figure adopted
from Ref.30
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conformers. Each conformer is scored based on
knowledge - based energy function. The conformers
present In the final generation are subjected to validation
using other CADD and experimental methods.31 Autodock
(Lamarkian Genetic Algorithm) and Glide software
(Exhaustive search algorithms) utilizes GA based molecular
docking approach.

Auto Grow4 is an open-source GA based lead optimization
software.30 It is based on python coding, it is useful for
predicting novel ligands using a combination of GA and
molecular docking. A population of seed molecules is
chosen initially as potential solution. Molecular docking
of these ligands into a chosen targets helps in identifying
suitable molecules towards the next generation. The
propagation of ligands from one generation to another
generation can be done using crossover, mutant compound
generation, elite compound selection, filtration, assessing
the fitness, evaluating chemical properties, etc. All these
help in lead optimization (Figure 2). Spiegel and Durrant
demonstrated the use of AutoGrow4 by designing PARP-
1 inhibitors. They identified two compounds from this
analysis (Figure 3). MoleGear is also a useful evolutionary
approach to de novo design.32 GANDI utilizes GA
approach in parallel mode for lead optimization.33

Machine learning (ML) in Drug Discovery
Machine learning (ML)9,10,13,34-36 approaches provide a
set of tools that can improve discovery and decision
making for well-defined questions with abundant
high-quality data. Computer software can be
trained to grasp the important information related
to drugs and allow the identification from millions
of chemical species. Machine learning (ML) is a
computer aided technique in which a set of
data is provided to train some software
component or to generate ML models which
infer patterns from the supplied data to make
reasonable predictions on the new data. In ML,
hardware component does not learn anything
from the supplied data. ANN, SVM, RF, LR,
NB, etc. are the most successful ML methods
which are being employed in drug discovery.35,36

In this article, only DNN based drug discovery
examples are included for brevity.

DNN is one of the latest developments in the
field of ML, which is being used in CADD.37-41

DNN contains multiple hidden layers (Figure 4).
In DNN, nonlinear relations between the input
parameters and the output can be effectively
grasped. Mostly they are trained using the

feedforward approach. In DNN, the neurons multiply the
inputs and weights and take a decision to give an output
signal in binary form (0 or 1). The weights get adjusted
during training. Over fitting is one of the major issues in
DNN, which can be overcome with improved data quality.
In comparison to other NN models, DNN can handle
thousands of parameters in the input layer - pre-selection
of descriptors is not essential. Input layer can utilize
descriptors acquired from 2D/3D structures as well as
from the molecular finger prints. By modulating the number
of layers, number of nodes in each layer, the activation
function and other characteristics, we can fine-tune the
performance of a DNN. Several benchmark studies were
reported, which established that DNN performs better
than RF, SVM, etc. methods. Similarly, a few studies
were performed establishing that the multi-task DNN
performs better than sing-task DNN. DNN methods perform
better with an increase in the sample size - i.e. the
larger the number of chemotypes to train a DNN, the
better is its applicability (this factor may also be
considered as a limitation of DNN as the models with
small datasets may not perform satisfactorily). Identifying
new chemical structures carrying desirable molecular
properties (clogP, drug-likeness, etc.) is being carried out
using DNN. Big data analysis using AI techniques is an
important aspect, which is being effectively carried out
using DNN. In the past 10 years, several reviews were
published which report the application of DNN in de novo
drug design, suggesting synthetic routes, prediction of
binding affinity, estimation of activity properties, evaluation
of ADMET properties.37,39-41

DeepTox pipeline which predicts toxicity of drugs is one
of the important tools using Deep Learning approach.41

Before taking up model building, standardization of data
was done. A data set of 12,707 compounds was initially
reduced to 8694 fragments after normalization and merging
in DeepTox. Model validation was done using cluster
cross validation approach. Platt scaling approach was
used for ensemblepredictions. The DNN model
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Figure 3: Compounds finalized from AutoGrow4 analysis.30

Figure 4: A representative diagram of Deep Neural Network. Figure adopted
from Ref.4
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outperformed the oth ermodels based on SVM, RF, etc.

Multi task DNN methods for classifying highly and weakly
potent protein Kinase inhibitors42 using DNN. A set of
19,030 potent inhibitors which possessed activity against
103 different human kinases were utilized for this study.
This work is a multi-task DNN model. It was established
that using DNN approach, the chemical features of kinase
inhibitors can be effectively utilized for the classification
purpose. The compounds exhibiting pIC

50 
< 10nM were

considered as highly potent and compounds exhibiting
pIC

50 
> 1000 nM were considered as weakly potent.

Here, only those kinase targets were considered for the
model development which possessed five positive as well
as five negative inhibitors. The input data was based on
finger prints (ex.ECFP4 based model contained 1127
bits). Out of the many generated DNN models, one
model contained three hidden layers consisting of 2000,
1000 and 100 neurons. Back propagation algorithm was
used to train the DNN. Over-fitting of the DNN was
controlled using an algorithm (dropout - 25%) which was
specifically known for this purpose. This model was
shown to be better than many other alternatives considered
for the classification of kinase inhibitors.43

AI techniques are generally considered as techniques
which cannot explain the logic employed in drug discovery.
However, a few attempts are being made to eliminate
this limitation. Schneider and co-workers recently
elaborated the current attempts in AIDD with the advantage
of explainable artificial intelligence.44 DNN is being used
to model nonlinear relationships between input parameters
of drug like molecules vs. the output parameters related
to therapeutic application. DNN methods which are better
than QSAR models are being developed for drug discovery.
Chemception is a DNN tool developed for this purpose.45,

46 Explainable artificial intelligence (XAI) is an approach
for application in interpretable machine learning, such
new approaches are bridging the gap between the
traditional scientific approaches and the ML approaches.
Transparency, justification, informativeness as well as
uncertainty estimation are properties being offered by
XAI.47 The lack of liaisoning (if any) between the data
scientists, chemoinformatics scientists, quantum medicinal
chemistry experts, and synthetic medicinal chemistry
experts is expected to be blurred as a result of XAI in
drug discovery. Todeschini and co-workers adopted an
integrated gradients feature attribution method in
combination with a graph-CNN (convolutional neural
network) to predict drug-cytochrome interaction. The site
of metabolism (SoM) as well as the known metabolites
could be predicted with the XAI approach.48

Methods for visually explaining the protein-ligand binding
affinity, protein-ligand scoring as well as lead optimization
of small molecule potency using three-dimensional CNN
was introduced. KDEEP, DeltaDelta neural networks are
the examples of 3D-CNN approach.49,50 Molecular property
prediction leading to de novo drug design is being
suggested using graph-CNN approaches. Subgraph
identification approaches (GNNExplainer) and attention-
based approaches are also part of the graph-CNN efforts
in chemistry/drug discovery.51 Lipinski et al. elaborated
the perspectives of deep learning applications in drug

design and discovery.52 Fooladi recently reviewed the
existing RNN, CNN and DNN applications in drug design
and discovery.53

Limitation of AI in Drug Discovery
Although the efficacy of AI based methods in drug
discovery are significant but their applications are limited
in both capability and functionality.54 One major criticism
of many AI techniques such as neural networks is that
they are often regarded as black boxes that merely
attempt to map a relationship between output and input
variables based on a training data set. This also
immediately raises some concerns about the ability of
the tool to generalize to situations that were not well
characterized in the data set. One of the limitations of
the genetic algorithm methods is that they are never
guaranteed to reach the "optimal" solution, though the
solutions provided are highly useful. In ML technique, we
can not ensure that what the model learned in terms of
derivitization or in terms of heuristic reasoning, the ML
model itself learns a few factors from the data provided
to it. It is difficult to ensure which factor of the supplied
data was utilized to train which component of an ML
model. A well-known drawback of deep learning is its
poor performance where data size is low-to-medium.

Conclusions and future perspectives

Many attempts are being made in applying AIDD. The
results need to be judiously applied. The AIDD models
are only as good as the training provided to them. If
sufficient reliable data is provided during training, we can
trust the model. Hence, it is important to pay attention
to data quality before taking up the AI model development.
It has been a roller-coaster ride for the AIDD in the
recent past, hopefully the trend will stabilize soon and
the AIDD techniques will be adopted by all drug discovery
scientists.
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